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§1 September 11, 2017

§1.1 Introduction

Class wasted.

§2 September 13, 2017

§2.1 Rectilinear Motion of a Particle

We begin by introducing (again) definitions. A position is a vector in general. Given a
direction ~r and a time t, then the position P at time t is P = ~rt. The velocity is also a
vector. Denoted ~v, it is given by ~v = lim∆t→0 ∆~r/∆t = dr/dt. The speed is given as the
magnitude of the velocity, and is ‖~v‖. The acceleration ~a is the derivative of velocity,
and is given by ~a = d~v/dt = d2~r/dt2.

In the case of rectilinear motion, we have only one dimension to consider. The above
expressions for velocity and acceleration can therefore be generalized in the following
manner. In the special case for rectilinear motion, we have

v =
dx

dt
,

a =
dv

dt
=

d2x

dt2
= v

dv

dx
.

For the special cases where v = 0 and a = 0, the equations can be simplified further.
Uniform rectilinear motion means that v is constant, and so a = 0. To find the position
in this case, we note that

x− x0 =

∫ t

t0

vdt = v(t− t0).

Uniformly accelerated rectilinear motion on the other hand, means that a is a constant.
Thus, at an initial t0 and v0, we can integrate the expressions of velocity and acceleration
to obtain

v − v0 =

∫ t

t0

adt = a(t− t0),

x− x0 =

∫ t

t0

vdt = v0(t− t0) +
a(t− t0)2

2
,

v2 = v2
0 + 2a(x− x0).

Example 2.1

A motorist enters a freeway at 25 miles/hour and accelerates uniformly to 65
miles/hour. From the odometer in the car, she knows that she has travelled 0.1 miles
while accelerating. Determine the acceleration of the car, and the time required to
reach 65 miles/hour.

Solution. We solve for a in the equation v2 = v2
0 + 2a(x− x0). Using v = 65, v0 = 25,

x − x0 = 0.1, we find that the acceleration is therefore 18000 miles/hour. Now, using
v = v0 + a(t− t0), we can substitute known values to solve for ∆t = t− t0. Doing so, we
find that ∆t = 0.0022 hours. Therefore, the time required is approximately 8 seconds. �
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§3 September 15, 2017

§3.1 Relative Motion of Two Particles

Consider the rectilinear motion of two particles A and B. Oftentimes, we are concerned
with the position of particle B with respect to (relative to) the position of particle A.
We define the relative motion of particle B relative to particle A in terms of position,
velocity, and acceleration:

xB/A = xB − xA,

vB/A = vB − vA,

aB/A = aB − aA.

Remark 3.1. Note that when we do not consider relative motion, we still consider the
motion of a particle relative to the arbitrary origin that we have set. Thus, relative motion
can be thought of as fixing the origin at the location of a particle A, and considering the
motion of B relative to A.

§3.2 Dependent Motion and Constraint Equations

There are times when the position of a particle depends on those of another particle.
Dependent motion describes this phenomenon by attaching certain constraints on the
position of two particles. When the relation between the position coordinates of particles
in linear, then similar relations hold for velocity and acceleration.

Example 3.2 (Dependent Motion)

Suppose we have a pulley of radius R with masses A and B fixed on opposing sides
of an inextensible cable. The center of the pulley is h from the ceiling, while A and
B are xA and xB from the ceiling respectively. (This is not really a question).

Solution. Since we have two particles, we have two degrees of freedom. xA and xB are
dependent, so we are left with one degree of freedom. Now, we need to find a constraint
equation. Since we assume that the cable is inextensible, the length of the cable does not
change, and thus we have fixed the remaining degree of freedom.

The left length of cable is xA − h, the length of the cable curled around the top half
of the pulley is πR (for the arc length), and the right length of cable is xB − h. Our
constraint equation is therefore (xA − h) + πR+ (xB − h) = C1, where C1 is a constant.
Since h and R are fixed, we can rewrite this as xA + xB = C2, where C2 is another
constant. The displacement is therefore ∆xA + ∆xB = 0. We can find the derivative of
both sides to obtain vA + vB = 0 and aA + aB = 0. �

Remark 3.3. Note that there was no need to include h and πR in the equation, as it has
no influence on ∆x, v, and a. A fixed length difference can be ignored in the constraint
equation as far as the motion is concerned. The relative velocity in this situation is
vB/A = vB − vA = −2vA since vA + vB = 0 means that vB = −vA.

4



David Ng Dynamics for Mechanical Engineering Majors

Example 3.4

Now, suppose we have three particles. From the cable end fixed to the ceiling, we
encounter the first pulley with mass A attached, the second pulley, the third pulley
with mass B attached, the fourth pulley, and then finally mass C at the end of the
cable. The second and fourth pulleys are attached to the ceiling at a fixed height
h, while the first and third pulleys with A and B are free to move up and down.
Determine the constraint equation of the pulley system.

Solution. We obtain constraint equations from the fact that the length of cable is fixed.
Using reasoning similar to the first example above, we ignore the height of the pulleys and
the arc length (assuming they are constant) to obtain the constraint 2xA +2xB +xC = C,
where C is a constant. Deriving the expression, we obtain 2vA + 2vB + vC = 0 and
2aA + 2aB + aC = 0. �

Example 3.5

Block A moves down with a constant velocity of 1 m/s. Determine the velocity of
block C, the velocity of collar B relative to block A, and the relative velocity of
portion D of the cable with respect to block A.

Solution. We have three particles and two constraints. Since we are given the velocity
of block A, we have zero degrees of freedom. First, the length of cable supporting A is
constant, so xA + (xA − xB) = C1. Thus, taking the derivative, we obtain 2va − vB = 0.
However, since we know that vA = 1 m/s downwards, we know that vB = 2 m/s
downwards. For the cable supporting B, we have 2xB + xC = C2. The derivative gives
2vB + cV = 0, so we find that vC = 4 m/s upwards since we know what vB is.

The relative velocity is vB/A = vB − vA = 2− 1 = 1 m/s. Since vB > vA, this means
that B will catch up to A.

To find vD/A, we need to find vD. Point D is fixed on the cable, so we say that
xD +xC = 0. Taking the derivative to be equal to 0, we find that vD = 4 m/s downwards.
Thus, vD/A = vD − vA = 4− 1 = 3 m/s. �

§4 September 18, 2017

§4.1 Curvilinear Motion

Recall the triangle law of vectors. The resultant vector is simply the sum of all vectors.
We denote ~r(t) indicates the position of a particle at time t. Then, ∆~r = ~r(t+ ∆t)− ~r(t)
from the triangle law. However, d~r = lim∆t→0 ∆~r, so ∆~r and d~r/dt are not necessarily
in the same direction as ~r.

For a particle moving in curved motion from point P to P ′, over a change in time from
t to t+ ∆t, its change in position ~r is given as ∆~r = ~r′−~r. However, as d~r = lim∆t→0 ∆~r,
this means that the velocity ~v = d~r/dt is tangent to the path of motion at any given
time. Since velocity is the derivative of position with respect to time, the velocity is
always tangent to the path of motion.

For acceleration, we want to find ∆~v = ~v′ − ~v. Thus, the direction of acceleration is
the same as that of d~v. Acceleration is not tangent to the path of motion unless we have
the special case of rectilinear motion.
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§4.2 Rectangular Components of Velocity and Acceleration

We can specify the position of a vector ~r in terms of the unit vectors as

~r = x~i+ y~j + z~k.

Since velocity is the derivative of position, we can derive an expression for velocity from
x, y, and z components,

~v =
d~r

dt

=
dx

dt
~i+

dy

dt
~j +

dz

dt
~k

= vx~i+ vy~j + vz~k

Here, vx, vy, and vz denote the velocity in the x, y, and z components respectively. The
magnitude of velocity is speed, which is given as

v =
ds

dt
,

where the speed v is obtained by finding the length s of the arc described by the particle
and differentiating with respect to time t. Like velocity, acceleration can be defined in
terms of ax, ay, and az along the x, y, and z axes is given by,

~a =
d~v

dt

=
dvx
dt
~i+

dvy
dt
~j +

dvz
dt
~k

= ax~i+ ay~j + az~k

Therefore, the components of velocity and acceleration can be obtained by considering
the motion in x, y, and z directions individually.

§5 September 20, 2017

§5.1 Curvilinear Motion Examples

Example 5.1 (Projectile Problem)

A particle initially moves with velocities vy(0) and vx(0). Determine the equations
that describe its motion.

Solution. First, we establish a frame of reference taking the initial location of the particle
to be the origin. Since we do not consider air resistance, this means that there is no force
acting on the particle in the horizontal direction, and so there is no acceleration in this
direction. In the vertical direction, the acceleration is equal to the acceleration due to
gravity. Because the particle moves within the plane, the acceleration in the z direction
is zero.

From the initial conditions, we know that that t = 0, x = 0, y = 0, vx(0) 6= 0, and
vy(0) 6= 0. In the x direction, we have uniform rectilinear motion. Thus, vx = vx(0)
and x = x0 + vx(0)t = vx(0)t. In the y direction, we have uniformly accelerated
rectilinear motion, so vy = vy(0) − gt, and y = vy(0)t − gt2/2. Note that this results
in rectilinear motion in orthogonal directions. the parametric equations x(t) ad y(t)
describe a parabola. �
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Example 5.2

A basketball player shoots when she is 5 m from the backboard. The basket is 3.048
m from the ground. Knowing that the ball has an initial velocity v(0) at an angle
of 30◦ with the horizontal, determine the value of v(0) when the basket is 228 mm
from the backboard. Let y(0) = 2 m.

Solution. We need to find v(0) such that x = 5 − d when y = 3.048. Recall that for
uniform rectilinear motion on the x direction, x = x0 + vx(0)t. Thus, since x0 = 0, we
obtain x = v(0) cos(30)t and therefore t = x/v(0) cos(30). In the y direction, we have

y = y(0) + vy(0)t+ at2

2 = y(0) + v(0) sin(30)t− gt2

2 = y(0) + x tan(30)− gt2

2 . Thus, when
d = 0.228 m, we find that x = 4.77 and y = 3.048. Therefore, substituting values gives
t = 0.590 s and v(0) = 9.34 m/s at 30◦. �

§6 September 22, 2017

§6.1 Motion Relative to a Frame in Translation

For a moving frame of reference, any new position is given by

~P = Px
~i+ Py

~j + Pz
~k.

The rate of change of a vector is therefore

d~P

dt
=

dPx

dt
~i+

dPy

dt
~j +

dPz

dt
~k.

Suppose that we would like to determine the velocity and acceleration of a body in
a frame that is in motion relative to another frame of reference. The absolute motion
of a particle B is the motion of the frame plus the relative motion of B with respect to
the moving frame. Let us call the origin of the moving frame A. Let ~rB be the absolute
position vector of point B that moves with the moving frame, ~rA be the absolute position
of the origin of the moving frame, and let ~rB/A be the relative position of B with respect
to A. We can then apply the triangle law for vectors to find that

~rB = ~rA + ~rB/A,

~vB = ~vA + ~vB/A,

~aB = ~aA + ~aB/A.

Thus, we can find the absolute motion of a particle B by obtaining the motion of particle
A, and the relative motion of B with respect to the frame attached in A that is in
translation.

Example 6.1

When a small boat travels north at 3 miles/hour, a flag mounted on its stern forms
an angle θ = 50◦ with the centre line of the boat. A short time later, when the boat
travels east at 12 miles/hour, the angle once again 50◦. Determine the speed and
the direction of the wind.

7
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Solution. Let w denote values pertaining to the wind, and b denote values pertaining to
the boat. ~vw and ~vb,1 are absolute to the fixed frame of the earth. Thus, we find that the
flag is ~vflag,1 = ~vw −~vb,1 = ~vw/b,1. We can rearrange this last equation to solve for ~vw. At
this point, we do not know ~vw/b,1 or ~vw, but we do know ~vb,1 and the angle of the flag.

At the second position when the boat travels east, we again know the angle formed
by the boat and the flag, and the velocity of the boat ~vb,2. We assume that the velocity
of the wind remains the same. Here, we still do not know ~vw, and we also do not know
~vw/b,2.

We can now use the triangle vector law to solve for the unknowns, given that ~vw
remains the same for both positions. It may be advantageous to resolve into x and
y components. Doing so, we find that (~vw)x = 8.519 miles/hour and (~vw)y = −4.148
miles/hour. Therefore, ~vw = 9.475 miles/hour at an angle of 25.96◦ �

Example 6.2

The velocities of commuter trains A and B such that A is traveling west at 80 km/h
and B is traveling 60 km/h at an angle of 25◦. Knowing that the speed of each
train is constant and that B reaches the crossing 10 minutes after A passed through
the same crossing, determine the relative velocity of B with respect to A, and the
distance between the fronts of the engines 3 min after A passed through the crossing.

Solution. From the geometry, we can apply the triangle vector law to determine the
relative velocity of B with respect to A. That is, ~vb/a = ~vb−~va. Resolving into components
and solving the equation, we find that ~vb/a = 37.99 m/s at 10.69◦.

We recall that for rectilinear motion, the displacement is simply d = vt. The position
of A is given as vt = 80t km supposing that the intersection is arbitrarily denoted the
origin. The position of B is therefore dB,0+ �

§7 September 25, 2017

§7.1 Motion of a Projectile

A projectile is any object upon which the only force acting is gravity. We assume that
the initial position of the object is (x0, y0), the initial velocity of the object is ~v0, and
there is no air resistance.

Example 7.1

A golf ball is hit at A with a speed of vA = 40 m/s directed at an angle of 30◦ to the
horizontal. Determine the distance d that the ball strikes B, which lies on an incline
with a slope of 0.2.

Solution. We are given vA = 40 m/s, and that θ = 30◦. We denote the horizontal length
and the height at which the ball makes contact at B. Thus, we first note that the angle
of the incline is tan−1(0.2) = 11.31◦. We can then express the horizontal length as
R = d cos(11.31) and h = d cos(11.31). We can now find the horizontal component R =
vx(0)t = vA cos(θ)t and the vertical component h = vy(0)t− gt2/2 = vA sin(θ)t− gt2/2.
Combining these equations, we find that d = 94.1 m. �
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§7.2 Normal and Tangential Components of Curvilinear Motion

Let s(t) denote the path function of a particle with respect to time. We will now utilize a
coordinate system that uses normal N and tangential T components of motion. That is,
these axes are normal and tangential to the path of motion, and have their origin located
on the particle at all times. We will refer to the unit normal vector and tangential vector
as ~un and ~ut respectively.

We can consider the paths as being constructed by a series of differential arc segments.
Each segment ds is the arc length of an associated circle of radius of curvature ρ and of
centre O′. By convention, T is positive in the direction of increasing s, and N is positive
in the direction towards the centre of curvature O′.

The particle’s velocity is always tangent to the path of the particle, and has a magnitude
equal to the slope v = ds/dt. Acceleration on the other hand, is the rate of change of
the velocity vector. Therefore, given unit direction vectors ~ut and ~un, we find that

~v = v~ut,

~a =
d~v

dt
=

dv

dt
~ut +

v2

ρ
~un,

where at = dv/dt is the tangential component of acceleration and an = v2/ρ is the normal
component of acceleration. From this, we conclude that the tangential component reflects
the change in speed of the particle, while the normal component reflects the change in
direction of the particle. There are times when the radius of curvature is not obvious. In
the cases when the path is expressed as y = f(x), then the radius is

ρ =

(
1 +

(
dy
dx

)2
)3/2

∥∥∥d2y
dx2

∥∥∥ .

§8 September 27, 2017

§8.1 Tangential and Normal Component Examples

Example 8.1

The car starts at s = 0 and increases its speed at at = 4 m/s2 on a track of radius
40 m. Determine the time when the magnitude of acceleration becomes 20 m/s2. At
what position s does this occur.

Solution. We are given that s(0) = 0, v(0) = 0, at = 4, and ρ = 40. We want to
determine the time t and position s when ‖~a‖ = 20.

The components of acceleration in this case are at = 4 and an = v2/40. Now,
since ‖~a‖ =

√
(at)2 + (an)2, we solve to find that v = 28 m/s. In the tangential

direction, v = v0 + att. We can then solve this with v = 28, at = 4, and v(0) = 0.
Solving this, we obtain t = 7 s. Now, we can find s by substituting known values into
v2 = v(0)2 + 2at(s− s(0)) to find s = 98 m. �

9



David Ng Dynamics for Mechanical Engineering Majors

Example 8.2

If a roller coaster starts from test at A and its speed increases at at = (6− 0.06s)
m/s2, determine the magnitude of its acceleration when it reaches B where s(B) = 40
m. B is located 30 m to the right of the origin, while A is at a location given by
y = x2/100.

Solution. We want to determine ‖~a‖ when s(B) = 40. Substituting s = 40, we find that
at = 6− 0.06(40) = 3.6 m/s2. We can find v by recalling that atds = vdv. Integrating
both sides, we find

atds = vdv∫ s

0
(6− 0.06s)ds =

∫ v

0
vdv

6s− 0.03s2 =
v2

2

Solving for v when s = 40, we find that v = 19.6 m/s2. Now, we find the radius of
curvature

ρ =

(
1 +

(
dy
dx

)2
)3/2

∥∥∥d2y
dx2

∥∥∥
=

(
1 +

(
x
50

)2)3/2

1
50

= 50

(
1 +

(
30

50

)2
)3/2

= 79.3

Now, we note that an = 19.62/79.3 = 4.84 m/s2. Therefore, ‖~a‖ =
√

3.62 + 4.842 = 6.03
m/s2. �

§9 September 29, 2017

§9.1 Review of Friction

We recall that friction resists relative motion or sliding between two surfaces. When
a force P is applied, the magnitude of the friction force F increases until it reaches a
maximum value of Fs. When the load force P is increased further, the friction force can
no longer balance, and so the object starts sliding. When the object is in motion, the
magnitude of the friction force decreases to Fk. Static friction and kinetic friction are
given as

Fs = µsN,

Fk = µkN.

When a rigid body comes into contact with a surface, four scenarios may result:

1. The forces applied to the body do not move it along the surface of contact, so
there is no friction force. This occurs for instance, when all forces and reactions
are directed vertically, so there is no tendency to slide across the surface.

10
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2. The forces applied to the body tend to move the body along the surface, but are
not large enough to initiate motion. The static friction force F can be found from
equilibrium equations. But since F has not reached its maximum value, Fs = µsN
cannot be used.

3. The forces applied to the body are such that motion is about to occur. In this case,
the friction force has reached its maximum value Fs, in the direction that opposes
the impending motion. Thus, the relevant equation and equilibrium equations can
be used.

4. The forces applied to the body are used to slide the body along the surface. The
equilibrium equations cannot be applied, the friction is now given by Fl = µkN in
the direction that opposes the motion.

The angle of static friction φs denotes the angle formed by the resultant of the normal
and friction force to the normal at the maximum Fs before motion occurs. When motion
actually occurs, the magnitude of the friction force drops to Fk, and so the angle of
kinetic friction φk is now used. The results are summarized below.

tanφs =
Fm

N
=
µsN

N
= µs,

tanφk =
Fk

N
=
µkN

N
= µk.

Example 9.1

A 40 kg package is at rest on an incline of 20◦ when a force P is applied to it at an
angle of −30◦. Determine the magnitude of P if 4s is required for the package to
travel 10m up the include. The static and kinetic coefficients of friction between the
package and the incline are 0.30 and 0.25 respectively.

Solution. We are given m = 40kg, µs = 0.30, µk = 0.25. The angle of friction φs =
tan−1(0.3) = 16.7◦ < 20◦. If P = 0, then the block moves downwards, since φs < 20◦.
From kinematics, we know that acceleration is a constant, since the forces are constant.
With x0 = 0 and v0 = 0, we know that x = at2/2. However, when t = 4, we know that
x = 10, so solving for acceleration, we find that a = 1.25 m/s2 at an angle of 20◦.

We now denote the y direction as normal to the block on the incline, with x the
direction up the incline. Summing the forces in the y direction, we have N −P sin (50◦)−
mg cos (20◦) = 0, where N is the normal force. Now, applying Newton’s Second Law in
the x direction, we have P cos (50◦)−mg sin (20◦)− µkN = ma. Simultaneously solving
these two equations by substituting N , we find that P = 612.5N. �

§9.2 Translating Axes Example

Example 9.2

Car B is traveling along a curved road with a speed of 15m/s while decreasing its
speed by 2m/s2. At this same instant, car C is traveling along the straight road
with a speed of 30m/s while decelerating at 3m/s2. Determine the velocity and
acceleration of car B relative to car C. At the start, B is located at 210◦ from C.
The radius of curvature of the path of B is 100m.

11
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Solution. First, we need to set up a set of reference axes. Now, we note that ~vC =(
−30~j

)
m/s and ~vB =

(
15 cos(60)~i− 15 sin(60)~j

)
m/s. From the triangle law of vectors,

we can find the relative velocity ~vB/C = ~vB − ~vC =
(

7.5~i+ 17.01~j
)

m/s. The magnitude

of the relative velocity is therefore
∥∥~vB/A

∥∥ =
√

7.52 + 17.012 = 18.6m/s. The angle is
therefore θ = tan−1(17.01/7.5) = 66.2◦.

Now for acceleration, we note that acceleration is −3m/s for C, so ~aC = −3~jm/s2.
The tangential component of acceleration of B can be expressed as (~aB)t = −2 cos(60)~i+

2 sin(60)~j =
(
−~i+ 1.732~j

)
m/s2. The normal component is (aB)n = v2/ρ = 152/100 =

2.25m/s2. We can then resolve this into (~aB)n = 2.25 cos(30)~i + 2.25 sin(30)~j =
1.948~i + 1.125~j. Adding both components of acceleration for B, we obtain ~aB =
(1.948 − 1)~i + (1.125 + 1.732)~j. Thus, subtracting the acceleration of C, we find

~aB/C =
(

0.948~i− 0.143~j
)

m/s2. �

§10 October 2, 2017

§10.1 Newton’s Second Law of Motion

Newton’s Second Law states that when an unbalanced force acts on a particle, the particle
will acceleration in the direction of the force with a magnitude that is proportional to
that force. The constant of proportionality is the mass of the particle. The mass is a
quantitative measurement of an object’s inertia. Stated mathematically, this states that∑

~F = m~a,

where ~F is the net force, ~a is the acceleration with the same direction as ~F , and m is the
mass. Note also that ~a must be obtained in a fixed frame of reference. That is, it is the
absolute acceleration.

Note that we can use the rectangular component form by splitting the acceleration
and force n each of the x, y, and z directions. We consider a particle moving relative to
an inertial (fixed) x, y, and x coordinate system. Thus, forces Fx, Fy, and Fz act upon
the particle, so we can separate Newton’s Second Law into components.∑

Fx = max,∑
Fy = may,∑
Fz = maz.

We can also consider tangential and normal components.∑
Ft = m

dv

dt
,

∑
Fn = m

v2

ρ
.

Remark 10.1. The second law of motion was originally stated by Newton as

~L = m~v,

where ~L is the linear momentum of a particle. The direction is the same as the velocity
of the particle, while the magnitude is equal to the product of the mass and the speed.
Thus, the second law can also be expressed as the rate of change of linear momentum.

12
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The four primary dimensions are force, mass, length, and time. We can define three of
the four, with the fourth dimension being derived. In SI units, the base units of length
m, mass kg, and time s are used to derive the units of force N = kg ·m/s2. In US units,
the base units of force lb, length ft, and time s are used to derive the units of mass
slug = lb · s2/ft. In US units, the acceleration due to gravity is approximately 32.2 ft/s2.

§11 October 4, 2017

§11.1 Equations of Motion

When more than one force is acting on a particle, it is the resultant force obtained by
vector summation that is of interest. Note that if the resultant force is zero, then there
is no change is the motion. This is not necessarily implying that there is no motion. In a
free body diagram, the object is shown free from all of its surroundings, supports, and
joints. All of the external forces are shown on the FBD. Free Body Kinetic Diagrams (or
kinetic diagrams) on the other hand, simply show m~a instead of ~F .

Consider a particle of mass m that is acted upon by several forces. Recall that Newton’s
Second Law states that ∑

~F = m~a.

In a FBD, we are concerned with the left side of the above equation. Thus, we define the
following.

• Body: Define the system by isolating the body to be considered. If the bodies can
be separated into individual components, multiple FBD and KD may be drawn.

• Axes: Define an appropriate coordinate system. This may be Cartesian, normal
and tangential, or radial and transverse.

• Reaction Forces: Replace constraints and supports with the forces that they produce
on the body being considered.

• Applied Force: Draw applied forces and any body (field) forces on the diagram.
This may include weight, magnetic forces, or pulling forces.

• Dimensions: Include angles and distances that are important for solving the
problem.

In a KD, we are concerned with the right side of the above equation. In statics problems,
we are concerned with bodies in equilibrium, so the inertial term in Newton’s Second
Law is zero. For dynamics problems however, this is not the case. Thus, we define the
following.

• Body: This is defined in the same manner as the one defined for the FBD. We draw
the body for the KD beside the body for the FBD.

• Inertial Term: Draw the m~a term consistent with the coordinate system defined
previously. This term is usually separated into components (max and may, or man
and mat). When these values are not known, they are drawn arbitrarily in the
positive direction.

13
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Example 11.1

A 400kg mine car is hoisted up an incline of slope 8/15 using a cable and motor M .
For a short time, the forces on the cable are F =

(
3200t2

)
N, where t is in seconds.

If the car has an initial velocity of v(0) = 2m/s at s = 0 and t = 0, determine the
distance that the mine cart has moved up the incline when t = 2s.

Solution. We first separate the force into vertical and horizontal components, assuming
that there is no friction. We now consider the FBD, with weight W acting directly
downwards, and the normal force N acting normal to the surface of the incline. Select
the x and y components to be along the incline and the normal. Thus, we resolve the x
and y components. ∑

Fx = max

3200t2 − 400(9.81)

(
8

17

)
= 400ax

ax = 8t2 − 4.616

Since we are asked to find the displacement s at t = 2, we integrate acceleration twice
to obtain an expression for displacement. Therefore, vx = 8t3/3− 4.616t+ 2, where the 2
comes from the initial velocity. Similarly, sx = 2t4/3− 4.616t2/2 + 2t. Evaluating this
expression at t = 2, we find that sx = 5.43m up the incline. �

§12 October 6, 2017

§12.1 Angular Momentum

Let P be a particle with mass m moving with respect to a newtonian frame of reference
Oxyz. Recall that m~v is the linear momentum of a particle. We define the moment of
momentum as

~HO = ~r ×m~v,
where ~HO is the angular momentum (also known as moment of momentum), and ~r is the
position vector of the particle P extending from the origin with linear momentum m~v.
Note that ~HO is perpendicular to the plane containing ~r and m~v, and that its magnitude
is ∥∥∥ ~HO

∥∥∥ = rmv sinφ,

where φ is the angle between ~r and m~v. The components of angular momentum can be
resolved into the coordinate axes.

Hx = m(yvz − zvy),

Hy = m(zvx − xvz),
Hz = m(xvy − yvx).

When the particle is moving along the xy plane only, then z = vy = 0 in the above
equations.

Differentiating angular momentum, we find that the sum of the moments about O of
the forces acting on the particle is equal to the rate of change of angular momentum of
the particle about O. ∑

~MO = ~r ×md~v

dt
= ~r ×m~a = ~r ×

∑
~F .

14
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§13 October 16, 2017

§13.1

Example 13.1

A box has a mass m and slides down a chute with the shape of a parabola. If it has
an initial velocity v0 at the origin, determine the velocity as a function of x. Also
determine the normal force on the box and the tangential acceleration as a function
of x. The curve is y = −0.5x2.

Solution. First, we draw the free body diagram with weight W acting downwards, the
normal force N acting normal to the surface at a distance of x, and the tangential force
acting forwards along the curve. Summing the forces in the normal direction and setting
this equal to the mass multiplied by the normal component of acceleration, we obtain

W cos(θ)−N = m
v2

ρ
.

We can obtain the radius of curvature, since

ρ =

(
1 +

(
dy
dx

)2
)3/2

∥∥∥d2y
dx2

∥∥∥
=

(
1 + x2

)3/2

‖1‖

=
(
1 + x2

)3/2

Because ds2 = dx2 + dy2, we can rearrange terms to find that ds =
√

1 + (dy/dx)2dx =√
1 + x2dx. Because cos(θ) = dx/ds, we find that it can be expressed as 1/

√
1 + x2.

From the first equation above, this means that

N =
mg√
1 + x2

− mv2

(1 + x2)3/2
.

We now sum the forces in the tangential direction to be equal to mass multiplied by
the tangential acceleration. This gives us

W sin(θ) = mat.

But we know that tan(θ) = dy/dx, so sin(θ) = cos(θ)dy/dx = x/
√

1 + x2. Substituting
this into the above equation, we obtain

mg

(
−x√
1 + x2

)
= mat.

Now that we have the tangential acceleration, we can obtain velocity through

vdv = atds

vdv = g

(
x√

1 + x2

)√
1 + x2dx∫ v

v0

vdv =

∫ x

0
gxdx

v2

2
− v2

0

2
=
gx2

2
.
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Now, we can now solve this for v in the expression for N to obtain

N =
m√

1 + x2

(
g − v2

0 + gx2

1 + x2

)
.

�

§14 October 18, 2017

§14.1 Work and Energy Methods

We will explore a useful method for solving problems involving force, displacement, and
velocity. This method is termed work and energy methods. Consider a force ~F that will
do work on a particle only when the particle undergoes a displacement in the direction of
the force. It is only the displacement that is of interest. If the force causes the particle to
move along the path s from ~r to ~r′, then the displacement is d~r = ~r′ − ~r. The magnitude
of d~r can be approximated by ds. If the angle between the tails of ~F and d~r′ is θ, then
the work done by ~F can be expressed as

dU = F cos(θ)dθ,

dU = ~F · d~r.

§14.2 Work of a Variable Force

In the most general terms, the work of a force on a particle that undergoes a finite
displacement from ~r1 to ~r2 is given as

U1,2 =

∫ ~r2

~r1

~F · d~r =

∫ s2

s1

F cos(θ)dθ.

Note the special case where the force is a constant.

§15 October 23, 2017

§15.1 Momentum and Impulse Examples

Example 15.1

A 4lb sphere A is connected to a fixed point O by an inextensible cord of length
3.6ft. The sphere is resting on a frictionless horizontal surface at a distance of 1.5ft
from O when it is given a velocity v0 in a direction perpendicular to line OA. It
moves freely until it reaches position A′, when the cord becomes taut when it is
extended 3.6ft. Determine the maximum allowable velocity v0 if the impulse of the
force exerted on the cord is not to exceed 0.8lbs.

Solution. Applying the principle of impulse and momentum, we find that mv0 cos(90−
θ)− F∆t = 0. We are given the condition that F∆t ≤ 0.8lbs. From trigonometry, this is
the same as saying that mv0 sin(θ) ≤ 0.8. Thus, v0 ≤ 0.8/m sin(θ) = 7.084ft/s. �
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§15.2 Central Impact

The line of impact is the common normal to the contact surface. Central impact occurs
when the two mass centers lie on the line of impact, while eccentric impact occurs
otherwise. In this course, we are concerned only with central impact. Central impact can
be separated into direct central impact where the velocity of both particles are directed
along the line of impact, and oblique central impact where the velocity of at least one
particle is not collinear with the line of impact.

§15.3 Direct Central Impact

During direct central impact, we first start with velocities vA and vB of particles A and
B respectively before impact. When impact occurs, we separate the process into the
duration when the particles deform, then recover from this deformation from the impact.
During the period of deformation, deformation occurs from zero to the maximum. During
the period of restitution, deformation can be fully recovered (elastic), permanent (plastic),
or partially recovered. After the impact, we have v′A and v′B.

When there are no forces in a particular direction, we have conservation of momentum
in this direction. This can be expressed mathematically as,

mAvA +mBvB = mAv
′
A +mBv

′
B.

During the period of deformation, we consider the first position to be just before impact,
and the second position to be at maximum deformation. Applying the principle of
impulse and momentum, we can equate the results from the two positions to obtain,

mAvA −
∫
P (t)dt = mAu.

During the period of restitution, we consider the first position to be at maximum
deformation, and the second position to be from just having recovered from elastic
deformation. Thus, we obtain,

mAu−
∫
R(t)dt = mAv

′
A.

To simplify calculations, we define the coefficient of restitution, defined as

e =

∫
R(t)dt∫
P (t)dt

=
u− v′A
vA − u

=
v′B − u
u− vB

=
v′B − v′A
vA − vB

,

where 0 ≤ e ≤ 1.

§16 October 30, 2017

§16.1 Translation and Fixed Axis Rotation

Consider a rigid body in translation. By definition, the direction of any straight line in
the body does not change in length or direction. Thus, letting A and B be two particles
inside the body, we note that the relative displacement from A to B ~rB/A is constant
throughout the translation. Thus, its derivative is zero. Thus, we can differentiate
~rB = ~rA + ~rB/A to obtain

~vB = ~vA,

~aB = ~aA.

17



David Ng Dynamics for Mechanical Engineering Majors

Thus, when a rigid body is in translation, all points of the body have the same velocity
and the same acceleration at any given instant. In the case of curvilinear translation, the
velocity and acceleration change in direction as well as magnitude at every instant. In
the case of rectilinear translation, all particles of the body move along parallel straight
lines, with the velocity and acceleration maintaining the same direction at all times. In
translation, we can treat the rigid body as a particle since all of the particles move with
the same velocity and acceleration. In other words, there is no relative motion between
any two points inside the body.

Consider a rigid body in rotation. By definition, the rigid body rotates about a fixed
axis AA′. Let point P be a point of the body and ~r be its position vector with respect
to a fixed frame. The angular velocity and acceleration are

~ω = ω~k = θ~k,

~α = α~k = ω′~k = θ′′~k,

where k is the unit vector along the AA′ axis. Now considering linear velocity and linear
acceleration, we obtain

~v =
d~r

dt
= ~ω × ~r,

~a = ~α× ~r + ~ω × (~ω × ~r) .

where r is the position vector. Note that the linear velocity ~v is tangential to the path
of motion. However, we can express the rotation of a rigid body about a fixed axis by
examining the motion of a representative slab in a reference plane perpendicular to the
axis of rotation. Choosing the z axis as the rotation axis and the xy plane as the reference
plane perpendicular to it, we obtain a representative slab. Let ~ut be the tangential unit
vector pointing counterclockwise, and ~un be the normal unit vector pointing towards
the the center of rotation. Thus, we obtain the following expressions for velocity and
acceleration

~v = ~ω × ~r = ω~k × ~r = rω~ut,

~a = α~k × ~r − ω2~r = (rα) ~ut +
(
rω2
)
~un,

where r is the radius, ω is the magnitude of angular velocity, the magnitude of the
tangential component of acceleration is at = rα and the magnitude of the normal
component of acceleration is an = rω2.

§16.2 Equations of Rotation

The motion of a rigid body rotating about a fixed axis AA′ is said to be known when we
can express its angular coordinate θ as a known function of t. In practice however, we
can seldom describe the rotation of a rigid body by a relation between θ and t. More
often, the conditions of motion are specified by the angular acceleration of the body.
Thus, we obtain

ω =
dθ

dt
,

α =
dω

dt
= ω

dω

dθ
.

This is analogous to the equations for linear velocity and acceleration. We obtain the
following special cases of rotation,
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1. Uniform Rotation: This case is characterized by the fact that the angular accel-
eration is zero, so α = 0. Thus, the angular velocity is constant and the angular
position is given by

θ = θ0 + ωt.

2. Uniformly Accelerated Rotation: In this case, the angular acceleration is constant,
so α = C for some constant C. We can derive the following formulas relating
angular velocity, angular position, and time in a manner similar to those for linear
acceleration.

ω − ω0 = αt,

θ − θ0 = ω0t+
αt2

2
,

ω2 − ω2
0 = 2α(θ − θ0).

Example 16.1

Two friction wheels A and B are both rotating freely at 300rpm counterclockwise
when they are brought into contact. After 12s of slippage during which both wheels
have a constant angular acceleration, wheel B reaches a final angular velocity of
75rpm counterclockwise. Determine the angular acceleration of each wheel during
the period of slippage, and the time at which the angular velocity of wheel A is equal
to zero. The radius of A is 2.5in, and the radius of B is 3in.

Solution. Note that after 12 seconds, we have uniform rotation so αA = αB = 0.
ω = 2π(75/60) = 7.85rad/s and ω0 = 2π(300/60) = 31.41rad/s. Substituting t = 12 in
the equation ω − ω0 = αt, we find that α = −1.9635rad/s. We also need to determine
the angular velocity of A at twelve seconds. �

General motion describes motion that is not translation or rotation about a fixed axis.
The two special cases of translation and rotation may be combined to produce general
motion.

§17 November 6, 2017

Example 17.1

Rod AB of length 20in can slide freely along the floor and inclined plane. The right
side B is located 12in above the ground on an incline that has a slope of 12/5. The
left end A is on the flat ground. At the instant shown, the velocity of end A is 4.2ft/s
to the left. Determine the angular velocity of the rod, and the velocity of end B of
the rod.

Solution. Note that the angle of the incline is θ = tan−1(12/5) = 67.38◦, and the angle
of AB with the ground is β = sin−1(12/20) = 36.87◦. We need to find ωAB and ~vB. We
now want to determine the relations between the unknowns and the given velocities.
Although we do not know the magnitude of ~vB, we do know the direction is down the
incline. We also know that the relative velocity ~vB/A must be normal to AB. Thus, we
can draw a velocity triangle with all angles known and with only the velocity of A known.

We then can simply apply the law of sines to obtain ~vB/A and ~vB. In this case, we
have ~vB/A/ sin(θ) = ~vA/ sin(φ), where φ = 59.59◦. Substituting known values, we obtain
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~vB/A = 4.5ft/s. To find the angular velocity, we have ~vB/A = ABωAB = ωAB(20/12), so
ωAB = 2.7rad/s. Note that we divided by 12 to convert to feet. Applying the law of
sines, we can also determine ~vB = 3.9ft/s at 67.38◦ south from west. �

Example 17.2

The 80mm radius wheel rolls (without sliding) to the left with a velocity of 900mm/s.
The wheel is attached to a 250mm rod at point A, where the line drawn from the
center of the wheel to the connection point forms an angle β east from south. The
other end of the 250mm rod is attached to collar B that is 160mm from the ground.
Knowing that the distance AD is 50mm from point A to the center, determine the
velocity of the collar and the angular velocity of rod AB when β = 0 and when
β = 90.

Solution. Note that we are given ~vD = 900mm/s to the left, and the radius of the wheel
is r = 80mm. We want to find ~vB and ωAB. We first consider rod AB. Note that A
is the point where the rod is connected to the wheel, and D is the center of the wheel.
Let point C denote the point of contact of the wheel with the ground. We would like to
determine the velocity of point A.

First we solve for β = 0. Now, consider wheel D. Since we are not sliding, we have the
relative velocity of point C to the other surface is 0. But since the ground is not moving,
we have ~vC = 0. We want to determine the angular velocity of D. But ~vD = ~vC + ~vD/C .
But since ~vC = 0, we can determine the relative velocity of D with respect to C. It
is exactly equal to the velocity of D. Now, ~vD/C = CDωCD, where CD indicates the
distance between D and C. But the length of CD is just the radius, so the angular
velocity is ωD = 900/80 = 11.25rad/s.

It remains to find ~vB. Since A in on the wheel, we can find ~vA = ~vC + ~vA/C . But since

~vC = 0, and since ~vA/C = ACωD, we have ~vA = ~vA/C = ACωD = (80 − 50)(11.25) =
337.5mm/s.

Now consider rod AB. Note then that we have ~vA = 337.5mm/s to the left, and
that ~vB = ~vA + ~vB/A. But ~vB/A is normal to AB. Summing components in the vertical
direction, we note that ~vB/A must equal 0, so ωAB = 0 meaning that there is no rotation.
Therefore, ~vB = ~vA = 337.5mm/s.

Finally, we solve for β = 90. The velocity of ~vB remains horizontal. The rotation
ωD remains the same as before. First consider the wheel, where ~vD = ~vD/C + ~vC . But
since the last term is zero, we can directly find ~vD/C , where this can be used to obtain

ωD = 11.25rad/s. Now, we find ~vA = ~vD + ~vA/D = −900~i+
(
ADωD

)
~j = −900~i+ 562.5~j.

Now, consider the other rigid body AB. We can determine that the angle that rod AB
forms with the horizontal is sin(α) = 80/250, so α = 18.663◦. But ~vB/A is perpendicular to

the rod AB. Thus, we know the direction of ~vB/A, with its magnitude being ABωAB . We
have unknowns of ωAB and ~vB. But separating into vertical and horizontal components,
we can determine both unknowns. Doing so, we obtain ωAB = −2.375rad/s and ~vB =
710mm/s. �

§18 November 8, 2017

§18.1 Instantaneous Center of Rotation in Plane Motion

Consider the general plane motion of a rigid body. We will show that, at any given
instant, the velocities of the various particles of the rigid body are the same as if the
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body were rotating about an axis perpendicular to the plane of the body, called the
instantaneous axis of rotation. This axis intersects the plane of the rigid body at a point
C, called the instantaneous center of rotation. At every instant in time, the rigid body
appears to rotate about this point. This gives us an alternative method for solving
problems involving the velocities of points on an object in plane motion.

Thus, to calculate the velocity at any point in the rigid body, we can simply connect
an imaginary line from the instantaneous center of rotation to that point. The velocity
at that point is then perpendicular to this imaginary line.

Example 18.1

Suppose that we have a wheel traveling with a velocity v to the left. Note that this
can be considered the velocity of the center of the wheel. After a time increment ∆t,
the wheel has rotated a certain amount. Consider the two cases.

1. If we are stuck, then rotation occurs much more than the velocity travelled
forwards.

v∆t < R∆θ.

2. If we slip, then rotation occurs much less than the velocity travelled forwards.

v∆t > R∆θ.

3. Under normal conditions, we have that rotation is directly related to the
velocity travelled forwards.

v∆t = R∆θ.

Rearranging this, we obtain
v = Rω.

To find the instantaneous centre of rotation, we can obtain the velocities at two points
within the rigid body. Drawing a perpendicular line from the direction of the velocity at
that point, the intersection is necessarily the instantaneous centre of rotation. Note that
this does not apply to acceleration, as the instantaneous centre of rotation applies only
to velocity calculations.

Example 18.2

Knowing that at the instant shown the angular velocity of rod AB is 15rad/s
clockwise, determine the angular velocity of BD, and the velocity of the midpoint of
rod BD. A is attached to the top, with B located 200mm below it. D is located
600mm to the left and 250mm below B, and E which is fixed is located 200mm right
of D.

Solution. The rotation of AB is about a fixed axis. Thus, ~vB = 0.2(15) = 3m/s clockwise,
and is towards the left as it is normal to the instantaneous center of rotation. Now, DE
is also rotated about a fixed axis, since E is fixed. So, we can conclude that ~vD is vertical
at this instant. Now, we can determine the instantaneous centre of rotation to be directly
to the right of D and directly below B. Call this point C. Thus, vB = BCωBD. Thus,
with vB = 3 and BC = 0.25, we find that ωBD = 12rad/s.

Now, we find the velocity at the midpoint of BD. But note that the midpoint of BD
which we call F , ensures that the lengths of DF and CF are the same. Now, we need
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to solve for vF = CFωBD. But we know that the length of CF is half the length of
BD, so CF = 0.325m. Thus, we can substitute known values of CF and ωBD to obtain
vF = 0.325(12) = 3.9m/s. The angle is determined from tan(β) = 0.250/.600 = 22.6
degrees North from West. Putting this together, we obtain ~vF = 3.9m/s at 22.6◦ North
from West.

�

§19 November 15, 2017

§19.1 Absolute and Relative Acceleration in Plane Motion

Recall that the relative acceleration of B with respect to A is given as ~aB = ~aA + ~aB/A.
But the relative acceleration term ~aB/A is related to the rotation of B about A. Namely,
it is comprised of a normal and tangential components. Thus, we obtain the following
expression,

~aB = ~aA +
(
~aB/A

)
n

+
(
~aB/A

)
t
.

To obtain normal and tangential components of acceleration, velocity is required.(
aB/A

)
n

= ABω2,(
aB/A

)
t

= rα = ABα,

where ω is the angular velocity and α is the angular acceleration. Note that
(
~aB/A

)
n

is

along BA, whereas
(
~aB/A

)
n

is tangential to this line.

Example 19.1

Collar A is 4in from a block to the left. D is located 7.5in below this fixed block,
and is part of rod ADB, where B extends 3in below D and a bit to the left (along
the slope of AD). E is located directly to the right of D at a distance of 6in. This
forms rod DE. Knowing that at the instant shown, the velocity of collar A is zero
and its acceleration is 0.8ft/s2 to the left, determine the angular acceleration of rod
ADB, and the acceleration of point B.

Solution. We are given that ~vA = 0 and ~aA = 0.8ft/s2 to the left. From the geometry,
we can determine the length of AD = 8.5in and the length of AB = 11.9in. We can
determine the instantaneous center of rotation I, since we know both the direction
of ~vD and ~vA. It is perpendicular to both velocity directions, so it is directly below
A and directly to the right of D. Because the velocity of A towards I is 0, we have
0 = ~vA = ωABAI, so ωAB = 0. Thus, ~vD = ωABDI = 0. Therefore, since ~vD = 0, we
have ωDE = 0.

Now, rod DE rotates about E, so ~aD = (~aD)n + (~aD)t . But since (~aD)n = DE (ωDE)2,
this evaluates to zero. Thus, we have ~aD = DEαDE = (0.5ft)αDE . Now considering rod
AB, we have ~aD = ~aA +

(
~aD/A

)
n

+
(
~aD/A

)
t
, where the normal component evaluates to

zero since ωAB = 0. Since we know all the directions, we can equate the expressions for
~aD by components to find that αAB = 1.28rad/s2.

To determine the acceleration of B, we have ~aB = ~aA +
(
~aB/A

)
n

+
(
~aB/A

)
t
, where

the normal component is zero since ωAB = 0. But
(
~aB/A

)
t

= ABαAB. We can now

substitute values to find that ~aB = 0.6776ft/s2 at an angle of 61.82◦ South from East. �
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§20 November 17, 2017

§20.1

Example 20.1

The 18in radius flywheel is rigidly attached to a 1.5in radius shaft that can roll along
parallel rails with a slope of 20◦. Knowing that at the instant shown the centre
of the shaft has a velocity of 1.2in/s and an acceleration of 0.5in/s2, both directed
down and to the left, determine the acceleration of the top of the wheel and the
bottom of the wheel.

Solution. We first analyze the velocity, calling the centre of the wheel G, and the point
of contact C, which is also the instantaneous center off rotation. Thus, ~vC = 0 and
ω = ~vG/r = 1.2/1.5 = 0.8rad/s. Now, we analyze acceleration. Since there is no slipping,
we find that the velocity at the contact point is zero at all times. The acceleration
however is not zero, since it is perpendicular to the rail, and ~aC is directed 20◦ West
from North. We can now write another expression for ~aC using G as a reference so
that ~aC = ~aG +

(
~aC/G

)
n

+
(
~aC/G

)
t
. We now equate both expressions and consider the

components. Using the expressions for normal and tangential components of acceleration,
we find that α = 0.333rad/s counterclockwise.

We can now determine the acceleration at the top and the bottom. Expressing ~aA using
G as a reference, we can use the given value of ~aG = 0.5, and calculate the tangential and
normal component values since we have α and ω. In particular, the tangential component
is 18α and the normal component is 18ω2. We can then find that ~αA = 13.36in/s2 at 61◦

South from West. Similarly, ~αB = 12.62in/s2 at 64◦ North from East. �

§21 November 20, 2017

§22 Moments of Inertia

§23 November 22, 2017

§23.1 Parallel Axis Theorem

Theorem 23.1 (Parallel Axis Theorem)

Let AA′ be an arbitrary axis, and BB′ be a parallel centroidal axis d apart from
AA′. The general relation between the moment of inertia I of the body with respect
to AA′ and its moment of inertia I with respect to BB′ is

I = I +md2,

where m is the total mass of the body.

As a consequence, we find that for the same amount of material, placing the material
far from the rotating axis increases the moment of inertia. Likewise, the moment of
inertia about its centroidal axis is always the smallest.
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§23.2 Angular Momentum of a Rigid Body

Consider a particle Pi of mass ∆mi from the original rigid body, where ~ri is the position
vector of this particle. Calculating the angular momentum of the particle about the
origin O, we find that (

~Ho

)
i

= ~ri ×∆mi~vi.

Deriving this with respect to time, we obtain(
~Ho

)′
i

= (~ri)
′ ×∆mi~vi + ~ri ×∆mi (~vi)

′ ,

= ~vi ×∆mi~vi + ~ri ×∆mi~ai,

= 0 + ~ri ×∆mi~ai,

= ~ri ×
∑

~Fi,

=
∑(

~Mo

)
i
.

For the entire rigid body, we now need to consider dm instead of ∆m. Thus, the
angular momentum of the rigid body is

~HG =

∫
(~r)′ × (~v)′ dm,

=

∫
(~r)′ ×

(
~ω × (~r)′

)
dm,

=

∫ (
r′
)2
~ωdm,

= ~ω

∫ (
r′
)2

dm,

= IG~ω.

Applying similar reasoning as in the case for a single particle,
(
~HG

)′
=
∑ ~MG. But then,

we find that ∑
~MG = IG~α.

Note that in order to apply the above equation, G must be the mass center.

§23.3 Equations of Motion for a Rigid Body

For a mass centre at G

§23.4 Plane Motion of a Rigid Body

The plane motion of a rigid body is completely determined by the resultant and moment
resultant about the mass center G of the external forces.∑

Fx = max,∑
Fy = may,∑
MG = Iα.

The external forces acting on a rigid body are equivalent to the effective forces of the
various particles forming the body. This is known as d’Alembert’s Principle. In general,
the motion of a rigid body consists of a translation and a centroidal rotation.
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Example 23.2

A 7.5kg rod BC of length 750mm connects a disk centered at A to crank CD. Crank
CD of length 200mm is located at an angle of 30◦ East from North, with the rod
attached to C at the top, and D is attached to the ground. Disk AB has the same
slope, and is of radius 200mm. Knowing that the disk is made to rotate at the
constant speed of 180rpm clockwise, determine for the position shown the vertical
components of the forces exerted on rod BC by the pins at B and C.

Solution. We note that since it is rotating at a constant speed, we have αA = 0. The
angular velocity of 180rpm can be expressed as 18.850rad/s. We first need to find the
vertical components of the reactions at B and C. According to the kinematics, we have
(~aB)t = 0 since the angular acceleration of the disk is zero.

aB = (aB)n

= rω2
A,

= 0.2(18.850)2,

= 71.064m/s2.

We now draw the FBD on bar BC of the real forces on the left, and of the effective
force on the right. Because we have two equivalent system, the sum of the moment
on the left is the same as on the right. Taking the sum of moments at B, we find
that Cy = 193.99N downwards. Summing forces in the vertical direction, we find that
By = 193.99N downwards as well. �

§24 November 24, 2017

§24.1 ∑
Fx =

(∑
Fx

)
effective

,∑
Fy =

(∑
Fy

)
effective

,∑
M =

(∑
M
)
effective

.

Example 24.1

A 20kg cabinet is mounted on casters that allow it to move freely (µ = 0) on the
floor. If a 100N force is applied at a distance of h from the floor horizontally to the
right, determine the acceleration of the cabinet and the range of values for which
the cabinet will not tip. The mass center is located 0.9m from the ground of the
rectangular 0.6m wide cabinet.

Solution. We need to consider the possibility of rotation. We draw the free body diagram,
with reactions at the casters A and B. The effective force is maG in the right direction.
Note that since motion is impending only, we have α = 0, implying that IGα = 0.
Summing forces in the horizontal component with the effective horizontal forces, we find
that 100 = 20aG. Thus, ~aG = 5m/s2 to the right.
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Now, consider tipping at point B located at the far end of the cabinet. This means
that RA ≈ 0. Sum the moments at point B to find that 100h − 0.3mg = 0.9(maG).
Substituting m = 20, g = 9.81, and aG = 5, we find that h = 1.489. Thus, if h is larger
than this value, the cabinet will rotate clockwise.

Now consider tipping at point A located at the near end of the cabinet. This means
that RB ≈ 0. Sum the moments at point A to find that 100h + 0.3mg = 0.9(maG).
Thus, we find that h = 0.3114. Thus, if h is smaller than this value, the cabinet will
rotate counterclockwise. Thus, the conditions of h for which there is no tipping is
0.3114 ≤ h ≤ 1.489. �

Example 24.2

A beam AB of mass m and of uniform cross section is suspended from two springs.
If the second spring on the right breaks, determine at that instant the angular
acceleration of the beam, the acceleration of point A at the bottom of the first spring
to the left, and the acceleration of point B on the right end of the beam. The first
spring is attached to the top of point A at the left end of the beam. At 3L/4 to the
right, the second spring is attached to the top of the beam at C. Point B extends
L/4 to the right of this. The beam is initially positioned horizontally.

Solution. Let G be the mass center of the beam. First, we need to determine the force
in the springs before the second spring breaks. Since this is in equilibrium, we draw an
FBD to determine the forces at A and C. We find that A = mg/3 and C = 2mg3.

At the moment that the second spring breaks, we are left with the real upwards force
due to the spring at A and the downward force of gravity on the mass center. For the
effective forces on the right hand side, we have an effective moment clockwise of IG
with an angular acceleration of α, and an effective force downwards at G of maG. At
this instant, we have no velocity for beam AB and no new displacement ∆yA at A yet.
Additionally, A = mg/3 at the instant the spring breaks.

By inspecting the left hand side, we can see immediately that the horizontal component
of the effective force on the right hand side is zero. By summing the vertical forces on
the left and the vertical effective forces on the right, we obtain

mg

3
−mg = −maG,

so we can solve this to find that aG = g/3 downwards (or −g/3). We can also sum the
moments with respect to G to find that∑

MG =
∑

(MG)effective ,

mg

3

(
L

2

)
= IGα

=

(
mL2

12

)
α.

Solving this, we find that α = 2g/L in the clockwise direction.
From kinematics analysis, we find that the normal component of the acceleration of

A with respect to G is zero since ω = 0. Thus,
(
~aA/G

)
t

= AGα = αL/2 = 2gL/2L = g.
Additionally, ~aA = +~aG + ~aA/G = −g/3 + g = g/3 upwards. �
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§25 November 27, 2017

§25.1 Systems of Rigid Bodies

For two or more rigid bodies, free body diagrams can be drawn for the entire system, or
for each rigid boy. External and internal forces relative to the free body diagram need to
be considered. It is usually convenient to consider the mass centers of each rigid body
instead of the mass center of the entire system.

§26 December 6, 2017

§26.1 Conservation of Energy (17.1E)

We use energy methods to determine the velocity. Note that the effective forces method
relates to acceleration, whereas energy methods relate to velocity. The initial potential
energy before the system is released from rest is V1 = (Vg)1 = 0, where we let this
be the datum at which we define the potential energy to be zero. Since it is released
from rest, the kinetic energy is T1 = 0. The change in height ∆h is the height change
at the center of gravity. At the final position below the initial, we have a change
of height, so V2 = (Vg)2 = −mg∆h. The kinetic energy at the final position is now

T2 = m (vG)2 /2 + IGω
2/2, where G denotes the mass center.

We may apply dependent motion relations to constrain vG and ω. Finding the
instantaneous center of rotation, we have vG = CGω.

Example 26.1

A 3kg slender rod rotates in a vertical plane about a pivot at B. The rod from A to
C positioned horizontally is 750mm and from C to B where B is between A and
C is 150mm. A spring of constant k = 300N/m and of an undeformed length of
120mm is attached to the rod at end C. The other end of the spring is attached to
D located 360mm below B. Knowing that in this position the rod has an angular
velocity of 4rad/s clockwise, determine the angular velocity of the rod after it has
rotated through 90◦ and 180◦.

Solution. We place the datum for which potential energy is zero at the level of the bar.
The moment of inertia is

IG =
m
(
AC
)2

12

=
3(0.75)2

12
= 0.140625

At the position shown, we have the mass center rotating around B, so (vG)1 = GBω =
0.225(4) = 0.9m/s. Now, the deflection of the spring is

√
0.152 + 0.362 − 0.12 = 0.27m.

Thus, we find that the initial kinetic energy is

T1 =
m (vG)2

1

2
+
IGω

2

2

=
3(0.9)2

2
+

0.140625(4)2

2
= 2.34J
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V1 = (Vg)1 + (Ve)1

= 0 +
300(0.27)2

2
= 10.935J

At the second position, the deflection is 0.36− 0.15− 0.12 = 0.09m and (vG) = GBω2 =
0.225ω2.

V2 = (Vg)1 + (Ve)1

= mg∆h+
kx2

2

= 3(9.81)(0.225) +
300(0.09)2

2
= 7.83675J

T2 =
m (vG)2

2

2
+
IGω

2
2

2

=
3(0.225ω2)2

2
+

0.140625(ω2)2

2
= 0.14625ω2

2J

Now, we use the principle of conservation of energy to find T1 +V1 = T2 +V −2 to obtain
2.34 + 10.935 = 7.83675 + 0.14625 (ω2)2. Solving this gives ω2 = 6.0979rad/s. Note that
we do not know the sign of ω, since it could be rotating clockwise or counterclockwise.

Now that the rod has rotated 180◦, we note that the gravitational potential energy
and the elastic potential energy as the same as in the first question initially. That is,
(Vg)1 = (Vg)3 and (Ve)1 = (Ve)3. �
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